電磁波レーダ法によるかぶり厚さ推定に関する一考察 (その1.反射時間とかぶり厚さ測定)

かぶり厚さ	電磁波レーダ法	反射時間
比誘電率	標準的な試験片	伝搬経路

1. はじめに

RC 建築物の品質確保のため JASS5 (2009 年版) に構造 体コンクリートのかぶり厚さの検査が導入され、主とし て電磁誘導法装置によってかぶり厚さが推定されている。 これは非磁性体であるコンクリートにはほとんど影響さ れずに計測する電磁誘導法装置の方が、コンクリートの 比誘電率の設定が特にかぶり厚さの小さい箇所では難し い電磁波レーダ法探査装置と比較して推定精度において 優れているためである¹⁾。しかし、電磁誘導法装置でも過 密な配筋条件やかぶり厚さ 50mm 以上となると推定精度が 悪くなり²⁾、基礎梁などでは適用が困難である。

本報では、市販電磁波レーダ法探査装置が反射時間を 0.01n s 単位で記録保存可能となったことなどを踏まえて、 RC 建築物のかぶり厚さ推定に電磁波レーダ法の適用性を 探るため、反射時間や比誘電率設定の基礎的試験を行う とともに、それらに及ぼすコンクリートの含水率の影響 などの試験結果について報告する。その1では、メラミ ン樹脂板などを試験片とした場合やかぶり厚さが既知の コンクリート壁試験体の反射時間や比誘電率について検 討した。

2. 使用した電磁波レーダ法装置の概要

使用した装置の仕様を**表1**に示す。ただし、仕様には反 射時間の表示精度の記載はない。

かぶり厚さ	5~300mm (コンクリートの比誘電率 6.2、鉄筋径 6mm 以上で上端筋の場合)
かぶり厚さ 分解能	浅モード : 約 1mm、深モード : 約 2mm
水平方向 分解能	深度 75mm 未満にある探査対象物: 75mm 以上 深度 75mm 以上にある探査対象物: 深度以上の間隔 ※標準コンクリートでの実測値(深度 75mm 時及び 175mm 時に鉄筋間隔 40mm の鉄筋を判別可能)
水平方向距離分 解能	2. 5mm
受信周波数 帯域	300~2300MHz

表1 装置の仕様

3. 電磁波レーダ法装置による基礎的試験

3.1 メラミン樹脂板、アクリル樹脂板、空気層

ここでは、幅 5cm、厚み 0.1mmのアルミテープを鉄筋に 見たて、その上にメラミンおよびアクリル樹脂板を 10mm ~170mm 程度重ねた場合の反射時間(T)を計測した。媒 体の伝搬速度(V)は式1で表される。比誘電率を算出す る場合の伝搬経路は図1に示すように、①板厚さと送受信 アンテナ間隔および装置裏面の空気層を考慮した場合と、

A Study on Presumption of Concrete Cover by The Electromagnetic Wave Radar Method (part1. Reflex time and Concrete cover)

正会員	○山田雅裕*1		同	安田正雪*2	同	柳田淳一*3
同	住	学 ^{*4}	同	後藤健二*5		

②板厚さと装置裏面の空気層のみとした場合について検討し、①は式2および式3により、②は式4、式5より算出した。なお、120mmまでの空気層を設けた場合についても計測した。その結果を図2および図3に示す。図3における、厚さ100mmの比誘電率はアクリル樹脂板が2.79、メラミン樹脂板が6.58、空気は1.03であった。

いずれの材も厚みが小さい場合には反射時間の変化が少 なく、比誘電率が小さい1.03~6.58のような場合、厚み が 30~50mm 以上になると比誘電率が一定の傾向を示した。 30~50mm 以下の浅い部分の反射時間の変化が少ないのは、 実際の厚みの反射時間よりも、送受信アンテナ間隔等によ る直達波、及びコンクリート表面からの反射時間が相対的 に大きく反映されているためと考えられる。図4に示すよ

	• • • •
$V=C/\sqrt{\epsilon_r}$	式1
d=VT/2	式2
$\epsilon_{r1} = C^2/V^2 = C^2 T^2 /4d^2$	式 3
D=VT/2-a	式4
$\epsilon_{r^2} = C^2/V^2 = C^2 T^2 /4 (D+a)^2$	式5
ここに、C:真空中での電磁波の速度 3×10 ⁸ (m/s)	
ε_{r1} 、 ε_{r2} :対象物の比誘電率	
L: 送文信/ ン/)の順柄(30mm) D:板頂 な「かぶり 厚 さ] (mm)	
a:対象物と装置裏面の距離(4mm)	
d:電磁波の伝搬経路(nm)=√ ((D+a) ² +(L/2) ²)	
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	* 0.2243 • • • • • • • • • • • • • • • • • • •
図1 電磁波伝搬経路 図2 板厚みと反射	時間
10 9 0	<u>乳なし</u> ラミン板 ラリル板 気層

YAMADA Masahiro, YASUDA Masayuki, YANAGIDA Junichi, SUMI Manabu and GOTOU Kenji

ように、浅い場合は反射波形 のピークが上下非対称になる。 これらより 30~50 mm程度の 厚みにおいて、これら板を標 準的な試験片として、比誘電 率の確認することで使用する 測定装置の動作異常の有無の

図4 断面画像と波形

確認が可能だと考えられる。また、板厚みと反射時間の 関係は2次の近似曲線式で相関が高いことから、反射時 間を確認することで少ない板厚みで容易に確認でき合理 的であると考えられる。

3.2 異種材料における反射時間と比誘電率

メラミン樹脂板 40mm 厚さをかぶり厚さにみたて、その 上にアクリル樹脂板 20mm、40mm、60mm を載せて反射時間 を計測し比誘電率を算出した。同時に空気層についても行 った。その結果を図5および図6に示す。メラミン樹脂板 を上載した場合も示すが、これは全項と同じ値である。ア クリル樹脂板を上載した場合の 0mm から 60mm の反射時間 は比例関係にある。異種の材料が重なっても板厚みが厚い 場合、すなわち伝搬経路が長い場合には反射波が乱れるこ とはないようである。なお、式3により求めた比誘電率は 異なる材料を上載するため大きく変化していることがわか る。このことはコンクリート表面が乾燥している状態と類 似しており、比誘電率の設定が難しいことを意味している。

図5 上載した場合の反射時間 図6上載した場合の比誘電率 3.3 コンクリート中の反射時間と比誘電率

試験体概要を図7に示す。試験体は乾燥状態(表面含水 率 4.8%) とそれを 4 週間湿布で覆った後の湿潤状態(同 5.2%)とした。なお、表面含水率の測定には静電容量式 含水率計を使用した。試験体の A 面および B 面のかぶり厚 さ 4.4mm~83mm (D10) について、各8ヶ所の反射時間を 計測した結果を図8、また式3および式5の板厚さをかぶ り厚さに置き換えて、比誘電率を算出した結果を図9に示 す。反射時間はかぶり厚さが小さいところを除けば、乾燥 状態と湿潤状態のいずれも反射時間はかぶり厚さと正の比 例関係にあることが確認された。伝搬経路を考慮した式3 による比誘電率は両面から中央位置の約 50mm に向けて

図9 比誘電率(左:伝搬経路考慮、右:同考慮なし) 大きくなり、その後反転していることから、両面からの 乾燥状態をうまく捉えている。一方、伝搬経路を考慮し ていない式 5 による場合(かぶり厚さと装置裏面空気層)、 比誘電率は A 面の表面付近では、かなり大きく算出され、 両面からの乾燥状態を捉えているとはいえない。このこ とから、現場で電磁波レーダ法を適用する場合、比誘電 率を正確に求めるには式3の利用が良いといえる。しか し、比誘電率を算出することなく、反射時間とかぶり厚 さの関係式を精度良く近似できれば、容易に反射時間か ら直接かぶり厚さが推定できることも可能なので合理的

4. まとめ

な方法であると考えられる。

RC 建築物のかぶり厚さ推定に関する電磁波レーダ法の 適用性についての検討した結果は、以下のとおりである。 1)装置使用前の動作確認には標準的な試験片としてメラ

- ミン樹脂板やアクリル樹脂板の利用が考えられる。
- 2)送・受信アンテナ間隔を踏まえた電磁波の伝搬経路を 考慮して、比誘電率を算出した方が良い。
- 3) 反射時間は実かぶり厚さとほぼ比例関係にあることか ら、反射時間から直接かぶり厚さを推定できる可能性が 示唆された。

【参考文献】

- 1) 例えば、 永山、西浦、谷川、棚野、濱崎:コンクリートの非破壊試験にお ける測定精度に関する実験的検討,日本建築学会大会学術講演梗概集, 2004. 8, pp. 219~222
- 2) 柳田, 大沼, 山口, 山田: プレキャストコンクリート部材の品質管理とかぶり厚 さに関する一考察, コンクリート工学 Vol. 50, No. 2, 2012. 2, pp. 163~170

*1 Toa Corporation

*2 Toyo Construction

*3 OHKI Corporation

^{*3} 大木建設 *1 東亜建設工業 *2 東洋建設

^{*4} 鴻池組 *5 計測技術サービス

^{*4} KONOIKE CONSTRUCTION Co.,LTD *5 KGS inc.

電磁波レーダ法によるかぶり厚さ推定に関する一考察

(その2.比誘電率に及ぼす含水率の影響)

かぶり厚さ	電磁波レーダ法	反射時間
比誘電率	含水率	非破壊試験

1. はじめに

その2では、柱試験体などを用いて、かぶり厚さ推定 に及ぼす含水率の影響や、かぶり厚さと反射時間の関係 を確認するとともに、反射時間と実かぶり厚さから計算 した比誘電率の推定精度についても検討した。

2. 実験概要

2.1 かぶり厚さ測定と含水率測定に用いた装置

かぶり厚さ測定はその1に示す電磁波レーダ法装置を 用いた。また、コンクリートの含水率測定は表面が静電 容量式水分計を用い、内部が電気抵抗式水分計を用いた。

2.2 試験体

(1) 柱試験体

試験体の概要を図1に示す。寸法は断面700×700mm、 長さ2000 mmで、縦打ちした試験体を横置きとし1面のみ を測定対象とした。コンクリート強度は2種類(呼び強 度27および40)であり、材齢約8か月経過したものであ る。配筋は、主筋D25、せん断補強筋D10@100 mmで、か ぶり厚さは、コンクリート打込み時の配筋乱れで検討に 都合が良く約35~50 mmとばらついている。実験は、最初 に乾燥した状態で測定したケース、その後濡れウェスと シートで4週間覆って湿潤状態で測定したケースとした。 また、せん断補強筋近傍の含水率を確認する目的で、測 定面に対して中央付近に均等に3か所(深さ40 mm)孔を 設け、内部含水率およびその横で表面含水率を測定した。

(2)かぶり厚さを変化させた試験体

試験体概要を図2に示す。表面(脱型面)から10、30、 50、100 および150 mmの位置にかぶり厚さを5段階に変化 させて丸鋼φ16を配置し、各位置の近傍には含水率測定 用の孔を設けた。コンクリートは表1に示す呼び強度24 および45の2種類を使用した。湿潤養生後、材齢5日に 測定対象面のみを脱型し、他は型枠を存置し、コンクリ ート打込み面は引続き乾燥させないよう湿潤状態とした。 なお、別途にかぶり厚さに相当する厚みの断面10cm角の 供試体も同時に製作し、材齢28日に質量測定後、吸水率 試験を実施し、比誘電率との関係を調べた。

3. 実験結果

3.1 柱試験体

かぶり厚さの実測値と電磁波レーダ法の測定で得られ た反射時間との関係を図3に示す。柱試験体における含

A Study on Presumption of Concrete Cover by The Electromagnetic Wave Radar Method

(Part 2. Influence of Moisture Content on Specific Inductive Capacity)

正会員	○安田正雪*1		同	山田雅裕*2	同	柳田淳一*3
同	住	学 ^{*4}	同	後藤健二*5		

表1 かぶり厚さを変化させた試験体の調合

呼び	W/C	s/a		単位	材齢 28 日 圧縮強度			
強度	(%)	(%)	W	C*1	S*2	G*3	A^{*4}	(N/mm ²) 封かん
24	57.4	46.0	179	312	809	989	1.88	39.2
45	38.4	43.2	170	443	725	989	4.06	57.5

*1:セメント(普通ポルトランドセメント)

*1:山砂 (表乾密度 2.60g/cm³) *2:石灰岩砕石 2005 (表乾密度 2.70g/cm³)

*3:呼び強度 24(AE 減水剤)、呼び強度 45(高性能 AE 減水剤)

図1 柱試験体

■かぶり厚さを変化させた試験体

合板型枠存置

水率の測定結果を表2に示す。反射時間はその1の結果と 同様、かぶり厚さ約35~50mmの範囲において、かぶり厚 さが大きくなるほど大きくなり、また乾湿状態の違いが良 く捉えられている結果となった。含水率は、呼び強度27 の方が呼び強度40より表面と内部との差が大きく、表面 は低かった。この反射時間とかぶり厚さの実測値(ドリル 孔で確認)を用いてその1の式3より各箇所の比誘電率を 求め、測定対象面毎に平均の比誘電率を求めた。各箇所の 推定かぶり厚さをその1の式1、式2より反射時間と平均

YASUDA Masayuki, YAMADA Masahiro, YANAGIDA Junichi, SUMI Manabu and GOTOH Kenji の比誘電率から算出し、かぶり厚さの実測値との誤差を確認した。その結果を図4に示す。いずれの試験体の乾燥および湿潤状態で、約35~50 mmのかぶり厚さの範囲において実測値±2 mmの精度で推定できている。このことは、限られた範囲で平均の比誘電率を正確に捉えることができれば、測定精度は良いといえる。

18	(2 11工口以间次 14	07百小牛肉足	和木(りり)	T-1-]/		
呼び	乾燥	軟態	湿潤状態			
強度	表面	内部	表面	内部		
27	4.9%	6.1%	5.8%	7.5%		
40	5.4%	5.8%	7.1%	7.0%		

図3 かぶり厚さ実測値と反射時間との関係(電磁波レーダ法)

図4 平均の比誘電率で推定したかぶり厚さの誤差

3.2 かぶり厚さを変化させた試験体

各試験体の材齢毎のかぶり厚さの実測値と含水率の関係 を図5に示す。含水率は表面から内部に向かって大きくな り¹⁾、初期材齢では呼び強度24の方が呼び強度45よりも 全体的に含水率が高い結果となり、単位水量の違いなどが 影響したと考えられる。かぶり厚さの実測値と反射時間お よび比誘電率の関係を図6に示す。比誘電率は、材齢の進 行とともに小さくなり、かぶり厚さの浅い10~50mmの範 囲で大きく変化し深くなるとほぼ一定の傾向となった²⁾。 一方、反射時間とかぶり厚さの関係はかぶり厚さの広い範 囲でも材齢毎に直線回帰式で相関が良く近似できている。 このことから、かぶり厚さの推定では、あるかぶり厚さ毎 で平均の比誘電率を用いるよりも反射時間のみで直接かぶ り厚さを推定した方が精度は向上するものと考えられる。

次に、含水率と比誘電率の 関係を図7に示す。また、吸 水率に対する含水率比と比誘 電率の平方根の関係を図8に 示す。図7の含水率は内部水 分計によるもので、図8は別 途供試体によるものであるが、 それぞれ材齢28日において いずれの調合も、同一の回帰 直線上に分布しており、含水 率から比誘電率を簡易推定で きる可能性がある。

4. まとめ

本実験の結果、以下の知見を得た。

- 1)限定されたかぶり厚さの範囲では、平均の比誘電率を 用いたかぶり厚さの推定誤差は小さかった。
- 2)かぶり厚さと反射時間がほぼ比例関係となり、かぶり 厚さの推定には反射時間から直接算出する方法もある。
- 3)比誘電率は深さ方向で変化するが、材齢 28 日の含水率 から簡易推定できれば参考となる。

今後、反射時間から直接かぶり厚さ推定を検討する。

【参考文献】

- 金森・野中ほか:非破壊試験によるかぶり厚さ測定に関する実験的研究 (その1~4),日本建築学会大会学術講演梗概集(東北),2009年8月
- 2) 山口・森濱ほか:電磁波レーダ測定におけるコンクリートの比誘電率とか ぶり測定,コンクリート工学年次論文集, Vol.26, No.1, 2004

*1 東洋建設 *2 東亜建設工業 *3 大木建設

*4 鴻池組 *5 計測技術サービス

*1 Toyo Construction

*4 KONOIKE CONSTRUCTION Co.,LTD *5 KGS inc.

*2 Toa Corporation *3 OHKI Corporation *5 KGS inc

電磁波レーダ法によるかぶり厚さ推定に関する一考察 (その3 比誘電率の推定方法に関する検討)

かぶり厚さ	電磁波レーダ法	反射時間	正会員	○柳田	淳一 ^{*1}	同	山田雅裕*2	同	安田正雪*3
比誘電率	含水率	非破壊試験	同	住	学*4	同	後藤健二*5		

1. はじめに

電磁波レーダ法によるかぶり厚さの推定精度は、測定 対象箇所の比誘電率に大きく影響を受けることから、比 誘電率の推定方法についていくつかの方法が示されてい る。その3では、これら既往の推定方法のほかに、比誘 電率の推定対象箇所が出隅部分に限定されるが、非破壊 の推定方法の選択肢のひとつとして、出隅部分を利用し た比誘電率の推定方法(以下、本方法と呼ぶ)について 実験検討を行い、その精度などについて検討した結果を 報告する。

2. 電磁波レーダ法の比誘電率を推定する方法の例

比誘電率を求める方法は、①鉄筋の深さが既知で測定 対象のコンクリートと同じコンクリートの媒体から求め る方法、②かぶり厚さを測定した鉄筋のかぶりコンクリ ートをはつり取る、または穿孔してかぶり厚さを実測し 求める方法、③測定対象内の鉄筋径を利用して非破壊に より推定する方法、などが示されている^{1).2)}。比誘電率の 推定には、かぶり厚さを実測して求める方法が高い精度 であると考えられるが、制約条件も多いことから、非破 壊による比誘電率の推定方法を併用していることが多い。

3. 出隅部分を利用した比誘電率の推定

走査開始位置 出隅部分頂点)

3.1 測定手順と方法

走査終了位置 鉄筋中央真上)

本方法は、柱や梁の出隅部分端部にある径が既知の鉄 筋を利用して、出隅部分の頂点から鉄筋中央までの距離 (Dx, Dy)と電磁波の鉄筋表面までの反射時間(Tx, Ty)を出隅部分で直交する二面について測定し、この結 果から比誘電率を推定する方法である。測定の手順を図1 に示す。このときの鉄筋中央の位置は、走査により断面 画像に現れた鉄筋を示す円弧の頂上となる。なお、この 位置は、その1で用いた装置では装置内部により自動的 に求められている。また、この比誘電率は、その1の式3 により求めた。

3.2 柱試験体による測定と測定結果

本実験では、その2に示した鉄筋コンクリートの柱試 験体を用いて、本方法で比誘電率を推定するとともに、 かぶり厚さの誤差を確認し、本方法の適合性を検証した。 電磁波レーダ法装置は、その1で示したものを用いた。 試験体は、呼び強度 27 と 40 のコンクリートで製作され た2種類を用いた。試験体の断面を図2に示す。それぞ れは主筋に異形鉄筋 D25、せん断補強筋は D13 が 100mm 間隔で配筋されており、一部区間には、故意に豆板を生 じさせた箇所がある。試験体は、測定作業のために横置 きにし、その水平面と垂直面からの主筋の位置とかぶり 厚さをレーダ法装置の走査対象とし、せん断補強筋の位 置を避けて走査した。写真1に走査状況を示す。この走 査箇所は、各面とも同じせん断補強筋間の 18 区間とした。 各面の表面含水率を、静電容量式水分計により測定した 結果を図3と図4に示す。次に、図1に示した測定手順 に従い、装置により測定した出隅部分から鉄筋中央まで の距離(Dx, Dy)から、鉄筋の半径を差し引いた数値、 すなわち距離による推定かぶり厚さ(Ax, Ay)を後述の

A Study on Presumption of Concrete Cover by The Electromagnetic Wave Radar Method. (Part3 Presumption of Specific Inductive Capacity)

YANAGIDA Junichi, YAMADA Masahiro, YASUDA Masayuki, SUMI Manabu, and GOTOH kenji

反射時間

図7の中に示す。なお、各試験体の測定区間1から500~ 600mm 間隔ごとの 4 箇所において、かぶり部分をはつり 取ってスケールで直接測定した数値を基に、かぶり厚さ を直線補間して求めた値、ここでは基準かぶり厚さと記 したが、推定かぶり厚さは基準かぶり厚さと若干の違い が認められるのは、後述の計測走査開始位置の影響など が考えられる。推定かぶり厚さから求めた比誘電率と含 水率の関係を図5に示す。その2における実験同様に、 含水率の増減に従い比誘電率も増減する傾向がみられ、 含水率 4.2~5.9%の範囲で、比誘電率は水平面、垂直面と もに3程度変化している。

図 6 に、本方法で推定した測定区間それぞれの比誘電 率を示すとともに、図中に各比誘電率の平均を示した。 各鉄筋のかぶり厚さの推定は、各反射時間とこの平均の 比誘電率を用いて算出し、基準のかぶり厚さとの誤差を 確認した。その結果を図7に示す。また、図8に基準か ぶり厚さと本方法によるかぶり厚さの推定値との差を示 す。ただし、呼び強度 27 の 10~13 区間は、走査した断 面画像が豆板のために不明瞭なため明確な数値が得られ ないことから、また、16~17 区間は異常値であったため、 検討対象から除いている。

次に、図9に基準かぶり厚さと本方法の推定値との差 について、基準かぶり厚さとの関係で示す。本実験は、 測定したかぶり厚さの範囲が限定的ではあるが、本方法 では差が約 9.5%以内に収まった結果となった。以上の結 果より、出隅部分を利用した比誘電率の推定方法を用い ることでも、他の方法と遜色がない精度でかぶり厚さの 推定が可能であると考えられる。ただし、本方法の推定 精度には、以下の①から③に挙げる要因などが影響する

図9 基準かぶり厚さと本方法の推定値との差

ものと考えられるので、注意が必要である。

①測定対象出隅部分の直角性について

本方法は、測定する二面の直交が前提であるため、そ の直交精度の影響が考えられる。

②探査機器距離計の計測精度について

探査機器の距離計測精度(±2.5mm)、および計測走査 開始位置の正確さも影響が考えられる。

③測定対象の含水率について

測定対象箇所の二面からの乾燥によって、この部分の 含水率が影響を受ける。

4. まとめ

出隅部分を利用した比誘電率の推定方法について測定 手順を示すとともに、本方法で求めた平均の比誘電率と 反射時間よりかぶり厚さを推定した実験の範囲では、他 の方法と遜色ない精度が得られた。

今後、RC 建築物における電磁波レーダ法によるかぶり 厚さ推定の精度向上にむけて、さらに検討を進める。

【参考文献】

- 1)(社)日本建築学会:鉄筋コンクリート造建築物の品質管理および維持 管理のための試験方法,2007
- 2) 中村・森濱ほか:鉄筋径を利用した非破壊試験による比誘電率分布と かぶりの推定, コンクリート工学年次論文集, Vol. 27, No. 1, 2005

*1 大木建設

*2 東亜建設工業

*1 OHKI Corporation

*2 Toa Corporation *4 KONOIKE CONSTRUCTION Co.,LTD

*3 東洋建設 *5 計測技術サービス *4 鴻池組

*3 Toyo Construction *5 KGS inc.